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 One of the earliest codes studied in coding theory.
 Named after Richard W. Hamming

 The IEEE Richard W. Hamming Medal, named after him, is an 
award given annually by Institute of Electrical and Electronics 
Engineers (IEEE), for "exceptional contributions to information 
sciences, systems and technology“.
 Sponsored by Qualcomm, Inc
 Some Recipients:

 1988 - Richard W. Hamming
 1997 -Thomas M. Cover
 1999 - David A. Huffman
 2011 -Toby Berger

 The simplest of a class of (algebraic) error correcting codes that 
can correct one error in a block of bits
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[https://www.youtube.com/watch?v=cBBTWcHkVVY]



Hamming codes

69

Alice and Bob exchange 
messages by plucking a wire 
either hard or soft to transmit 
a zero versus a one.

Alice Bob

Due to gusts of wind, false 
zerosor ones can occur during 
transmission resulting in 
errors.

In the 1940s, Richard Hamming faced a similar problem while working at Bell Laboratories.
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Hamming took it upon himself to devise a method which could automatically detect and 
correct single bit errors without interrupting calculations.

At the time the computers used 
stored information on punch cards 
representing one versus zero with 
hole versus no hole.

Hamming codes

This system was error-prone because it was common for cards to get bent or miss punched in 
the first place so holes could be missed or no holes could be accidentally punctured causing 
flipped bits.
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[https://www.youtube.com/watch?v=cBBTWcHkVVY]
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[https://www.youtube.com/watch?v=cBBTWcHkVVY]
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p1

p2 p3

d1 d2

d3

d4
ଵ ଵ ଶ ସ

ଶ ଵ ଷ ସ

ଷ ଶ ଷ ସ

In the video, the codeword is constructed 
from the data by

ଵ ଵ ଶ ଶ ଷ ଷ ସ

where

This is an example of Hamming (7,4) code

 The message bits are also referred to as the data bits or information bits. 
 The non-message bits are also referred to as parity check bits, checksum 

bits, parity bits, or check bits.
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 Fact: The 1s and 0s in the jth column of G tells which 
positions of the data bits are combined (⊕) to produce the jth

bit in the codeword.

 For the Hamming code in the previous slide,

G

𝑝ଵ ൌ 𝑑ଵ ⊕ 𝑑ଶ ⊕ 𝑑ସ
𝑝ଶ ൌ 𝑑ଵ ⊕ 𝑑ଷ ⊕ 𝑑ସ
𝑝ଷ ൌ 𝑑ଶ ⊕ 𝑑ଷ ⊕ 𝑑ସ

Writing the generator matrix from the code “structure”

 

 

1 1 2 2 3 3 4

1 2 3 4

1 1
1 0
0 0
1 0

p d p d p d d

d d d d



 
 
 
 
 
 

x
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 From 𝐱പ ൌ 𝐛ഫ𝐆 ൌ ෍ 𝑏௝
௝

௞

௝ୀଵ
, we see that the j element of  the 

codeword 𝐱പ of a linear code is constructed from a linear 
combination of the bits in the message: 

𝑥௝ ൌ ෍ 𝑏௜𝑔௜௝

௞

௜ୀଵ

.

 The elements in the jth column of the generator matrix become 
the weights for the combination. 
 Because we are working in GF(2), 𝑔௜௝ has only two values: 0 or 1. 
 When it is 1, we use 𝑏௜ in the sum.
 When it is 0, we don’t use 𝑏௜ in the sum.

 Conclusion: For the jth column, the ith element is determined from 
whether the ith message bit is used in the sum that produces the jth
element of the codeword 𝐱പ. 
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 0 0 0 1 1
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 1 1 1 0 0 0 0
1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 0 1 1 0
1 0 1 1 0 1 1 0 0 1 1
1 1 0 0 0 1 1 1 1 0 0
1 1 0 1 1 1 0 1 0 0 1
1 1 1 0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1

𝐝ഫ 𝐱പ  Now that we have a 
sufficiently-large example 
of a codebook, let’s 
consider some important 
types of problems.

 Given a codebook, how can 
we check that the code is 
linear and generated by a 
generator matrix?

 Given a codebook, how can 
we find the corresponding 
generator matrix?

Codebook of a linear block code
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 0 0 0 1 1
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 1 1 1 0 0 0 0
1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 0 1 1 0
1 0 1 1 0 1 1 0 0 1 1
1 1 0 0 0 1 1 1 1 0 0
1 1 0 1 1 1 0 1 0 0 1
1 1 1 0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1

𝐝ഫ 𝐱പ Note that 
 Each bit of the codeword for 

linear code is either
 the same as one of the message 

bits
 Here, the second bit (x2) of the 

codeword is the same as the first 
bit (b1) of the message

 the sum of some bits from the 
message
 Here, the first bit (x1) of the 

codeword is the sum of the first, 
second and fourth bits of the 
message.

 So, each column in the codebook 
should also satisfy the above 
structure (relationship).

Codebook of a linear block code
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 0 0 0 1 1
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 1 1 1 0 0 0 0
1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 0 1 1 0
1 0 1 1 0 1 1 0 0 1 1
1 1 0 0 0 1 1 1 1 0 0
1 1 0 1 1 1 0 1 0 0 1
1 1 1 0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1

𝐝ഫ 𝐱പ  One can “read” the 
structure (relationship) 
from the codebook.

 From 𝑥௝ ൌ ෍ 𝑑௜𝑔௜௝
௞

௜ୀଵ
when we look at the 
message block with a 
single 1 at position ,  
then
 the value of 𝑥௝ in the 

corresponding 
codeword gives 𝑔௜௝

 𝑥ଵ ൌ 𝑑ଵ ⊕ 𝑑ଶ ⊕ 𝑑ସ
 𝑥ଷ ൌ 𝑑ଵ ⊕ 𝑑ଷ ⊕ 𝑑ସ

𝑑ଵ

𝑑ଶ

𝑑ଷ

𝑑ସ

“Reading” the structure from the 
codebook.
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 0 0 0 1 1
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 1 1 1 0 0 0 0
1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 0 1 1 0
1 0 1 1 0 1 1 0 0 1 1
1 1 0 0 0 1 1 1 1 0 0
1 1 0 1 1 1 0 1 0 0 1
1 1 1 0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1

𝐝ഫ 𝐱പ  One can also “read” 𝐆 from the 
codebook.

 From 𝐱പ ൌ 𝐝ഫ𝐆 ൌ
෍ 𝑑௝𝐠പ ௝

௞

௝ୀଵ
,

when we look at the 
message block with a single 
1 at position 𝑖,  then
the corresponding 
codeword is the same as 
𝐠പ ௝ .

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

 
 
  
 
 
 

G

𝑑ଵ

𝑑ଶ

𝑑ଷ

𝑑ସ

𝐠പ ଵ

𝐠പ ଶ

𝐠പ ଷ
𝐠പ ସ

“Reading” the generator matrix from 
the codebook.
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 0 0 0 1 1
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 1 1 1 0 0 0 0
1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 0 1 1 0
1 0 1 1 0 1 1 0 0 1 1
1 1 0 0 0 1 1 1 1 0 0
1 1 0 1 1 1 0 1 0 0 1
1 1 1 0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1

𝐝ഫ  If a code is generated by a generator 
matrix, it is automatically a linear code.

 When the codebook is provided, look at 
each column of the codeword part.

 Write down the equation by reading the 
structure from appropriate row discussed 
earlier.

 For example, here, we read 
𝑥ଵ ൌ 𝑑ଵ ⊕ 𝑑ଶ ⊕ 𝑑ସ.

 Then, we add the corresponding 
columns of the message part and check 
whether the sum is the same as the 
corresponding codeword column.

 So, we need to check n summations.

 Direct checking that we discussed 

earlier consider 𝑀 െ 1
2

summations.

𝑑ଵ

𝑑ଶ

𝑑ଷ

𝑑ସ

𝐱പ

Checking whether a code is generated 
by some generator matrix G
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 0 0 0 1 1
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 1 1 1 0 0 0 0
1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 0 1 1 0
1 0 1 1 0 1 1 0 0 1 1
1 1 0 0 1 1 1 1 1 0 0
1 1 0 1 1 1 0 1 0 0 1
1 1 1 0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1

𝐝ഫ  We read 
ଵ ଵ ଶ ସ.

 We add the message 
columns corresponding 
to ଵ ଶ ସ, 
 We see that the first bit 

of the 13th codeword
does not conform with 
the structure above.

 Conclusion: This code is 
not generated by a 
generator matrix.

𝑑ଵ

𝑑ଶ

𝑑ଷ

𝑑ସ

𝐱പ

𝐠പ ଵ

𝐠പ ଶ

𝐠പ ଷ
𝐠പ ସ

Example:
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0 1 1 0
0 0 1 1 1 0 0 0 0 1 1
0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0 1
0 1 1 0 1 0 1 1 0 1 0
0 1 1 1 0 0 0 1 1 1 1
1 0 0 0 1 1 1 0 0 0 0
1 0 0 1 0 1 0 0 1 0 1
1 0 1 0 1 1 0 0 1 1 0
1 0 1 1 0 1 1 0 0 1 1
1 1 0 0 1 1 1 1 1 0 0
1 1 0 1 1 1 0 1 0 0 1
1 1 1 0 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1

𝐝ഫ  The case found in the previous 
slide may help with the search to 
show that the code is not linear.

 The corresponding message is 
1100.
 The codeword corresponding to 

this message should be 𝐠പ ଵ ⊕
𝐠പ ଶ .

 If 𝐠പ ଵ ⊕ 𝐠പ ଶ , is not a codeword, 
then we can quickly conclude 
that the code is not linear:

𝐠പ ଵ and 𝐠പ ଶ are codewords but 
𝐠പ ଵ ⊕ 𝐠പ ଶ ൌ 0111100 is not one 
of the codewords.

𝑑ଵ

𝑑ଶ

𝑑ଷ

𝑑ସ

𝐱പ

𝐠പ ଵ

𝐠പ ଶ

𝐠പ ଷ
𝐠പ ସ

Example:
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 Linear block codes are typically implemented with modulo-2 
adders tied to the appropriate stages of a shift register.

ଵ ଵ ଶ ସ

ଶ ଵ ଷ ସ

ଷ ଶ ଷ ସ

ଵ ଵ ଶ ଶ ଷ ଷ ସ

where

𝑑ଵ 𝑑ଶ 𝑑ଷ 𝑑ସ

𝑝ଵ 𝑝ଶ 𝑝ଷ
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Structure in the codewords:
𝑝ଵ ൌ 𝑑ଵ ⊕ 𝑑ଶ ⊕ 𝑑ସ
𝑝ଶ ൌ 𝑑ଵ ⊕ 𝑑ଷ ⊕ 𝑑ସ
𝑝ଷ ൌ 𝑑ଶ ⊕ 𝑑ଷ ⊕ 𝑑ସ

p1

p2 p3

d1 d2

d3

d4

𝐱പ ൌ 𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ

𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻

𝑝ଵ ⊕ 𝑑ଵ ⊕ 𝑑ଶ ⊕ 𝑑ସ ൌ 0
𝑝ଶ ⊕ 𝑑ଵ ⊕ 𝑑ଷ ⊕ 𝑑ସ ൌ 0
𝑝ଷ ⊕ 𝑑ଶ ⊕ 𝑑ଷ ⊕ 𝑑ସ ൌ 0

At the receiver, we check whether the received 
vector 𝐲പ still satisfies these conditions via computing 
the syndrome vector:

 1 2 3 4 5 6 7

1 0 0
1 1 0
0 1 0
1 0 1
0 0 1
0

?

1 1
1 1 1

y y y y y y y

 
 
 
 
   
 
 
 
  

s 0
𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ

Back to
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 Intuitively, the parity check matrix 𝐇, as the name suggests, tells 
which bits in the observed vector 𝐲പ are used to “check” for validity of 𝐲പ.

 The number of rows is the same as the number of conditions to check 
(which is the same as the number of parity check bits).

 For each row, a one indicates that the bits (including the bits in the parity 
positions) are used in the validity check calculation.

1 1 0 1 0 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 
   
  

H

Structure in the codeword:
𝑝ଵ ⊕ 𝑑ଵ ⊕ 𝑑ଶ ⊕ 𝑑ସ ൌ 0
𝑝ଶ ⊕ 𝑑ଵ ⊕ 𝑑ଷ ⊕ 𝑑ସ ൌ 0
𝑝ଷ ⊕ 𝑑ଶ ⊕ 𝑑ଷ ⊕ 𝑑ସ ൌ 0

𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ 𝑦ହ 𝑦଺ 𝑦଻
𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ



Parity Check Matrix: Ex 1

87

Relationship between and .

1 1 0 1 0 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 
   
  

H

𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ 𝑦ହ 𝑦଺ 𝑦଻
𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ1 1 1 0 0 0 0

1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

 
 
 
 
 
 

G

𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ
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Relationship between and .

1 1 0 1 0 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 
   
  

H

𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ 𝑦ହ 𝑦଺ 𝑦଻
𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ1 1 1 0 0 0 0

1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

 
 
 
 
 
 

G

𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ
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Relationship between and .

1 1 0 1 0 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 
   
  

H

𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ 𝑦ହ 𝑦଺ 𝑦଻
𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ1 1 1 0 0 0 0

1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

 
 
 
 
 
 

G

𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ

(columns of) identity matrix 
in the data positions

(columns of) identity matrix 
in the parity check positions
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Relationship between and .

1 1 0 1 0 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 
   
  

H

𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ 𝑦ହ 𝑦଺ 𝑦଻
𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ1 1 1 0 0 0 0

1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

 
 
 
 
 
 

G

𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ
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p1

p2 p3

d1 d2

d3

d4

𝐱പ ൌ 𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ
𝑝ଵ ൌ 𝑑ଵ ⊕ 𝑑ଶ ⊕ 𝑑ସ
𝑝ଶ ൌ 𝑑ଵ ⊕ 𝑑ଷ ⊕ 𝑑ସ
𝑝ଷ ൌ 𝑑ଶ ⊕ 𝑑ଷ ⊕ 𝑑ସ

where

Code structure

𝐝ഫ 𝐱പ

Codebook

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

 
 
 
 
 
 

G

𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ

1 1 0 1 0 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 
   
  

H

𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ 𝑦ହ 𝑦଺ 𝑦଻
𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ

Parity Check MatrixGenerator Matrix
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 The “identity-matrix” columns in corresponds to positions of 
the message (data) bits in each codeword.
 Ex. For this code, codeword 𝐱 ൌ ሾ1 1 0 0 1 1 0ሿ corresponds to 

message 𝐛 ൌ ሾ1 0 1 0ሿ. 
 The “identity-matrix” columns in corresponds to positions of 

the parity (check) bits in each codeword.

1 1 0 1 0 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 
   
  

H

𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ 𝑦ହ 𝑦଺ 𝑦଻
𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ1 1 1 0 0 0 0

1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

 
 
 
 
 
 

G

𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ



Review: Linear Block Codes

92

 The code structure is built into each codeword at the 
encoder (transmitter) via the generator matrix
 Each codeword is created by .

 The code structure is checked at the decoder (receiver) via 
the parity check matrix.
 A valid codeword must satisfy ் .

1 1 0 1 0 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 
   
  

H

𝑦ଵ 𝑦ଶ 𝑦ଷ 𝑦ସ 𝑦ହ 𝑦଺ 𝑦଻
𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ1 1 1 0 0 0 0

1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

 
 
 
 
 
 

G

𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ 𝑥଺ 𝑥଻
𝑝ଵ 𝑑ଵ 𝑝ଶ 𝑑ଶ 𝑝ଷ 𝑑ଷ 𝑑ସ



Key property:

Proof:

 When there is no error , the syndrome vector 
calculation should give .

 By definition, 
் ் ் ் ் ்.

 Therefore, when , we have ்.

 To have for any , we must have ் .

Parity Check Matrix
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 
T

k n k GH 0

A matrix of zeroes
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 Code constructed with distinct information bits and check 
bits in each codeword are called systematic codes. 
 Message bits are “visible” in the codeword.

 Popular forms of G:

  kk n k 
   G IP

 k k n k 
   G I P

   

 
2

2

1

21 1

kk n k

n k

k

k

b b b

b b bx x x 

 
    



P Ibx G 


1n kx   2n kx   nx

   

 
1

11 2 2

2

k

k k nk

k n

k

kx

b

b x

b

b x

b

b


 


    



x G I Pb 

 
1x 2x kx
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 For the generators matrices we discussed in the previous 
slide, the corresponding parity check matrix can be 
found easily:

     
T

k n k 

 
     

 

I
GH P I P P 0

-P

  kk n k 
   G P I

 k k n k 
   G I P T

n k   H P I

T
n k   H I P

Check:
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 Systematic (7,4) Hamming Codes

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 
   
  

H

0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

 
 
 
 
 
 

G
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Now, we will give a general recipe for constructing Hamming 
codes.

Parameters:

 number of parity bits

 ௠ 
 ௠

It can be shown that, for Hamming codes,

 dmin = 3.

 Error correcting capability: 



Construction of Hamming Codes
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 Start with m.

1. Parity check matrix H:
 Construct a matrix whose columns consist of all nonzero binary 
m-tuples.

 The ordering of the columns is arbitrary. 
However, next step is easy when the columns are arranged so 
that                      . 

2. Generator matrix G:
 When                       , we have                                               .

 mH I P

T T
k k        G P I P I mH I P
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 Systematic (7,4) Hamming Codes

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 
   
  

H

0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

 
 
 
 
 
 

G

 Columns are all possible nonzero 3-
bit vectors

 We arrange the columns so that I3 is 
on the left to make the code 
systematic. (One can also put I3 on 
the right.)

െ𝐏்

 Note that the size of the identity 
matrices in 𝐆 and 𝐇 are not the same.

𝐏
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1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 
   
  

H

0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

 
 
 
 
 
 

G

 Start with the parity-check matrix
 𝑚 rows

 𝑚 ൌ 𝑛 െ 𝑘
 Columns are all possible nonzero 𝑚-bit 

vectors
 𝑛 ൌ 2௠ െ 1 columns
 Arranged to have 𝐈௠ on the left (or on 

the right). 
 This simplifies conversion to 𝐆.

𝐏்

 Get 𝐆 from 𝐇.

 Note that the size of the identity 
matrices in 𝐆 and 𝐇 can be different.𝐏

𝐈௠

𝐈௞

𝑚 ൌ 3
Here,

𝑛 ൌ 2ଷ െ 1
ൌ 7

𝑘 ൌ 4

  kk n k 
  G P I T

n k   H I P
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 At the decoder, suppose we want to use minimum distance 
decoding, then
 The decoder needs to have the list of all the possible codewords

so that it can compare their distances to the received vector .
 There are 2k codewords each having n bits. 

Therefore, saving these takes ௞ bits.
 Also, we will need to perform the comparison 2k times.

 Alternatively, we can utilize the syndrome vector (which is 
computed from the parity-check matrix).
 The syndrome vector is computed from the parity-check matrix 

.
 Therefore, saving takes bits.



Minimum Distance Decoding
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 Recall that
𝑑 𝐱പ, 𝐲പ ൌ 𝒘 𝐱പ ⊕ 𝐲പ ൌ 𝒘 𝐞പ

 Therefore, minimizing the distance is the same as minimizing the weight of the 
error pattern.

 New goal: 
 find the decoded error pattern 𝐞ොപ with the minimum weight
 then, the decoded codeword is 𝐱ොപ ൌ 𝐲പ ⊕ 𝐞ොപ

 Once we know 𝐱ොപ we can directly extract the message part from the decoded 
codeword if we are using systematic code.

 For example, consider 

Suppose 𝐱ොപ ൌ 1011010, then we know that the decoded message is 𝐛መഫ ൌ 1010.

0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

 
 
 
 
 
 

G
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 Recall that, from ் , we have
்  ்  ் ்

 Thinking of as a matrix with many columns inside,

்
௝ ௝

௡

௝ୀଵ

 Therefore, is a (linear combination of the columns of )T.

 

1

2
1 2
T T T

n

n k n k n  

                   

h

h
H v v v

h



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1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 
   
  

H

Error pattern e Syndrome = TeH  

(0,0,0,0,0,0,0) (0,0,0) 

(0,0,0,0,0,0,1) (1,1,1) 

(0,0,0,0,0,1,0) (1,1,0) 

(0,0,0,0,1,0,0) (1,0,1) 

(0,0,0,1,0,0,0) (0,1,1) 

(0,0,1,0,0,0,0) (0,0,1) 

(0,1,0,0,0,0,0) (0,1,0) 

(1,0,0,0,0,0,0) (1,0,0) 
 

Note that for an error pattern 
with a single one in the jth
coordinate position, the 
syndrome ் is the 
same as the jth column of H.

Linear 
combination of 
the columns of H

𝐬പ ൌ 𝐞പ𝐇் ൌ ෍ 𝑒௝𝐯പ௝

௡

௝ୀଵ



 We will assume that the columns of 𝐇 are nonzero and distinct.
 This is automatically satisfied for Hamming codes constructed from our recipe.

 Case 1: When 𝐞പ ൌ 𝟎ഫ, we have 𝐬പ ൌ 𝟎ഫ.
 When 𝐬പ ൌ 𝟎ഫ, we can conclude that 𝐞ොപ ൌ 𝟎ഫ.

 There can also be 𝐞പ ് 𝟎ഫ that gives 𝐬പ ൌ 𝟎ഫ. 
 For example, any nonzero 𝐞෤ ∈ , will also give 𝐬പ ൌ 𝟎ഫ. 
 However, they have larger weight than 𝐞പ ൌ 𝟎ഫ. 

 The decoded codeword is the same as the received vector.

 Case 2: When, 𝑒௜ ൌ ቊ0, 𝑖 ൌ 𝑗,
1, 𝑖 ് 𝑗, (a pattern with a single one in the jth position)

we have 𝐬പ ൌ 𝐯പ௝ ൌ (the jth column of 𝐇)T

 When 𝐬പ ൌ ( the jth column of 𝐇 )T, we can conclude that 𝑒௜ ൌ ቊ0, 𝑖 ൌ 𝑗,
1, 𝑖 ് 𝑗,

 There can also be other 𝐞പ that give 𝐬പ ൌ 𝐯പ௝. However, their weights
 can not be 0 (because, if so, we would have 𝐬പ ൌ 𝟎ഫ but the columns of 𝐇 are nonzero)
 nor 1 (because the columns of 𝐇 are distinct).

 We flip the jth bit of the received vector to get the decoded codeword.

Properties of Syndrome Vector

102



Decoding Algorithm
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 Assumption: the columns of are nonzero and distinct.
 Compute the syndrome ் for the received vector. 

 Case 1: If  , set .

 Case 2: If  ,
 determine the position j of the column of H that is the same as 

(the transposition) of the syndrome,
 set but with the jth bit complemented.

 For Hamming codes, because the columns are constructed 
from all possible non-zero m-tuples, the syndrome vectors 
must fall into one of the two cases considered above.

 For general linear block codes, the two cases above may not 
cover every cases.
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N
oi
se
 &
 In

te
rf
er
en

ce

Channel

Received
Signal

Transmitted
Signal

Message (Data block)

Recovered Message

Channel 
Encoder

Digital
Modulator

Channel 
Decoder

Digital
Demodulator

x,c
codeword

0

1

0

1

p

1-p

p

1-p

m,d,b,s

𝐦ෝ, 𝐝መ, 𝐛መ , 𝐬ො

minimum 
distance decoder

k bits k bits k bits
n bits n bits n bits

Binary Symmetric 
Channel with 
p < 0.5

𝒔പ ଵ
𝐬പ ଶ

𝐬പ ଷ

𝐬പ ସ

𝐱പ ଵ

𝐱പ ଶ

𝐱പ ଷ

𝐱പ ସ

𝑀 ൌ 2௞ possibilities

Choose 𝑀 ൌ 2௞ from 
2௡ possibilities to be 
used as codewords.

 y x e

𝐱പ ൌ 𝐝ഫ𝐆

𝐬 ൌ 𝒚𝐇் ൌ 𝐞പ𝐇்

Generator 
matrix

Parity-check matrix
𝐆𝐇் ൌ 𝟎

Syndrome
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 Consider the Hamming code with

 Suppose we observe at the 
receiver. Find the decoded codeword and the decoded 
message.

1 1 0 1 0 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 
   
  

H

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 0 1 0 1 1 0
1 0 1 0 1 0 1

 
 
 
 
 
 

G
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 Encoding
 The bit positions that are powers of 2 (1, 2, 4, 8, 16, etc.) are check bits.
 The rest (3, 5, 6, 7, 9, etc.) are filled up with the k data bits. 
 Each check bit forces the parity of some collection of bits, including itself, to 

be even (or odd). 
 To see which check bits the data bit in position i contributes to, rewrite i as a sum of 

powers of 2. A bit is checked by just those check bits occurring in its expansion

 Decoding
 When a codeword arrives, the receiver initializes a counter to zero. It then 

examines each check bit at position i (i = 1, 2, 4, 8, ...) to see if it has the 
correct parity. 

 If not, the receiver adds i to the counter. If the counter is zero after all the 
check bits have been examined (i.e., if they were all correct), the codeword
is accepted as valid. If the counter is nonzero, it contains the position of the 
incorrect bit.

[To be explored in the HW]
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 Conventional error-control methods such as parity checking are 
designed for errors that are isolated or statistically independent 
events.

 Some errors occur in bursts that span several successive bits.
 Errors tend to group together in bursts. Thus, errors are no longer 

independent
 Examples
 impulse noise produced by lightning and switching transients
 fading or in wireless systems 
 channel with memory

 Such multiple errors wreak havoc on the performance of 
conventional codes and must be combated by special techniques. 

 One solution is to spread out the transmitted codewords.
 We consider a type of interleaving called block interleaving.



Interleave as a verb
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 To interleave = to combine different things so that parts of 
one thing are put between parts of another thing

 Ex. To interleave two books together:
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𝑥ଵ
ଵ 𝑥ଶ

ଵ ⋯ 𝑥௡
ଵ 𝑥ଵ

ଶ 𝑥ଶ
ଶ ⋯ 𝑥௡

ଶ ⋯ 𝑥ଵ
ℓ 𝑥ଶ

ℓ ⋯ 𝑥௡
ℓ

𝑥ଵ
ଵ 𝑥ଵ

ଶ ⋯ 𝑥ଵ
ℓ 𝑥ଶ

ଵ 𝑥ଶ
ଶ ⋯ 𝑥ଶ

ℓ ⋯ 𝑥௡
ଵ 𝑥௡

ଶ ⋯ 𝑥௡
ℓ

𝑥ଵ
ଵ 𝑥ଶ

ଵ ⋯ 𝑥௡
ଵ

𝑥ଵ
ଶ 𝑥ଶ

ଶ ⋯ 𝑥௡
ଶ

⋮ ⋮ ⋱ ⋮
𝑥ଵ

ℓ 𝑥ଶ
ℓ ⋯ 𝑥௡

ℓ

Consider a sequence of m blocks of coded data:

 Arrange these blocks as rows of a table.
 Normally, we get the bit sequence simply by 

reading the table by rows.
 With interleaving (by an interleaver), transmission 

is accomplished by reading out of this table by 
columns.

 Here, ℓ blocks each of length n are interleaved to 
form a sequence of length ℓn.

The received symbols must be deinterleaved (by a deinterleaver) prior to decoding.



Interleaving: Advantage

109

 Consider the case of a system that can only correct single errors. 
 If an error burst happens to the original bit sequence, the system 

would be overwhelmed and unable to correct the problem. 

 However, in the interleaved transmission, 
 successive bits which come from different original blocks have been 

corrupted 
 when received, the bit sequence is reordered to its original form and 

then the FEC can correct the faulty bits 
 Therefore, single error-correction system is able to fix several errors.

𝑥ଵ
ଵ 𝑥ଶ

ଵ ⋯ 𝑥௡
ଵ 𝑥ଵ

ଶ 𝑥ଶ
ଶ ⋯ 𝑥௡

ଶ ⋯ 𝑥ଵ
ℓ 𝑥ଶ

ℓ ⋯ 𝑥௡
ℓ

𝑥ଵ
ଵ 𝑥ଵ

ଶ ⋯ 𝑥ଵ
ℓ 𝑥ଶ

ଵ 𝑥ଶ
ଶ ⋯ 𝑥ଶ

ℓ ⋯ 𝑥௡
ଵ 𝑥௡

ଶ ⋯ 𝑥௡
ℓ

original bit sequence

interleaved transmission
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 If a burst of errors affects at most consecutive bits, 
then each original block will have at most one error.

 If a burst of errors affects at most consecutive bits 
(assume 𝑟 ൏ 𝑛), 
then each original block will have at most errors.

 Assume that there are no other errors in the transmitted 
stream of n bits.
 A single error-correcting code can be used to correct a single 

burst spanning upto ℓ symbols.
 A double error-correcting code can be used to correct a single 

burst spanning upto 2ℓ symbols.
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